Exercise 40

(a) If $f(x)=\left(x^{2}-1\right) e^{x}$, find $f^{\prime}(x)$ and $f^{\prime \prime}(x)$.
(b) Check to see that your answers to part (a) are reasonable by comparing the graphs of f, f^{\prime}, and $f^{\prime \prime}$.

Solution

Evaluate the derivative using the product rule.

$$
\begin{aligned}
f^{\prime}(x) & =\frac{d}{d x}\left[\left(x^{2}-1\right) e^{x}\right] \\
& =\left[\frac{d}{d x}\left(x^{2}-1\right)\right]\left(e^{x}\right)+\left(x^{2}-1\right)\left[\frac{d}{d x}\left(e^{x}\right)\right] \\
& =(2 x)\left(e^{x}\right)+\left(x^{2}-1\right)\left(e^{x}\right) \\
& =\left(x^{2}+2 x-1\right) e^{x}
\end{aligned}
$$

Evaluate the second derivative using the product rule again.

$$
\begin{aligned}
f^{\prime \prime}(x) & =\frac{d}{d x}\left[f^{\prime}(x)\right] \\
& =\frac{d}{d x}\left[\left(x^{2}+2 x-1\right) e^{x}\right] \\
& =\left[\frac{d}{d x}\left(x^{2}+2 x-1\right)\right]\left(e^{x}\right)+\left(x^{2}+2 x-1\right)\left[\frac{d}{d x}\left(e^{x}\right)\right] \\
& =(2 x+2)\left(e^{x}\right)+\left(x^{2}+2 x-1\right)\left(e^{x}\right) \\
& =\left(x^{2}+4 x+1\right) e^{x}
\end{aligned}
$$

Below is a graph of the function and its derivatives versus x.

$f^{\prime}(x)$ is positive wherever $f(x)$ increases, $f^{\prime}(x)$ is zero wherever the slope of $f(x)$ is zero, and $f^{\prime}(x)$ is negative wherever $f(x)$ is decreasing.

Similarly, $f^{\prime \prime}(x)$ is positive wherever $f^{\prime}(x)$ increases, $f^{\prime \prime}(x)$ is zero wherever the slope of $f^{\prime}(x)$ is zero, and $f^{\prime \prime}(x)$ is negative wherever $f^{\prime}(x)$ is decreasing. The answers in part (a) are reasonable then.

